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Abstract

Dynamic faulting under slip-dependent friction in a linear elastic domain (in-plane and 3D configurations) is consid-
ered. The use of an implicit time-stepping scheme (Newmark method) allows much larger values of the time step than
the critical CFL time step, and higher accuracy to handle the non-smoothness of the interface constitutive law (slip weak-
ening friction).

The finite element form of the quasi-variational inequality is solved by a Schwarz domain decomposition method, by
separating the inner nodes of the domain from the nodes on the fault. In this way, the quasi-variational inequality splits
into two subproblems. The first one is a large linear system of equations, and its unknowns are related to the mesh nodes of
the first subdomain (i.e. lying inside the domain). The unknowns of the second subproblem are the degrees of freedom of
the mesh nodes of the second subdomain (i.e. lying on the domain boundary where the conditions of contact and friction
are imposed). This nonlinear subproblem is solved by the same Schwarz algorithm, leading to some local nonlinear sub-
problems of a very small size.

Numerical experiments are performed to illustrate convergence in time and space, instability capturing, energy dissipa-
tion and the influence of normal stress variations. We have used the proposed numerical method to compute source
dynamics phenomena on complex and realistic 2D fault models (branched fault systems).
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1. Introduction

Numerical modeling is an important tool to understand all three phases of earthquake source dynamics:
initiation (also called nucleation), rupture propagation and arrest. The initiation phase of earthquakes, pre-
ceding the dynamic rupture, has been pointed out by detailed seismological observations [16,28] and some lab-
oratory friction experiments, e.g. [40]. Theoretical studies [10,13,14,29,44], based on spectral analysis, have
tried to give a qualitative description (characteristic time, critical fault length, etc.) of the initiation phase,
which is characterized by an unstable evolution with an exponential growth in time of slip rate amplitude.
Not all numerical schemes can capture this unstable behavior. For instance, a finite difference scheme was pro-
posed in [29], for the anti-plane (2D, mode III) problem, and developed thereafter in [18,19] for the in-plane
(2D, mode II) and 3D problems, but the use of a finite difference method restricts the applications on planar
fault geometries. Further references on earthquake simulations can be bound for instance in [6]. We shall men-
tion here a few recent works that constitute effective efforts to model realistic fault geometries. First, the pos-
sibility of including curved faults within a finite difference grid (here, the rotated staggered grid) is discussed in
[11] and used to model 3D dynamic rupture along non-planar faults in [12]. Also, note that a finite volume
technique is applied to rupture dynamics in [7]. The spectral element method (which is a special case of high
order finite element method) is used in [20,21] to solve in-plane rupture dynamics. Finally, the boundary ele-
ment method (BEM) – also known as boundary integral equation method (BIEM) – is widely used in this field,
in 2D [30,42] as well as 3D [3,4].

There are much fewer finite element models [1,5,6,36] in the field of earthquake rupture simulation, because
they are more difficult to implement than finite differences, and because low order schemes can lead to unde-
sirable numerical dissipation. However, finite element methods have numerous advantages compared with
finite differences. They can handle strong heterogeneities as well as complex geometries [6,37–39]. Besides,
in dynamic contact mechanics, related friction laws are currently modeled using finite elements and there is
a large number of papers and books on this topic (e.g. [27,31,33,34,47,48] and the references therein). The con-
struction of solvers which exploit the locality of the friction law and simultaneously provide optimal solution
methods is, although possible, far from trivial. We refer to [32] for scalar variational inequalities and, in par-
ticular, to [17] and the references cited therein for frictional contact problems. We believe that the comparison
of the different finite element approaches (including spectral element methods) for dynamic rupture modelling
should be discussed by means of a benchmark. Indeed, the differences between these methods are numerous:
the finite elements can be of high order (SEM) or low order (P1 FEM); the time-stepping scheme can be fully
explicit (mass lumping) or implicit (main characteristic of the method proposed in this paper); etc. Such a
benchmark, which results could help us evaluate these differences and identify some others, is beyond the
scope of the present paper.

Since the friction laws involved in dynamic faulting models are strongly nonlinear, the use of an implicit
time-stepping scheme leads to a nonlinear elliptic problem at each time step. Domain decomposition is one
of the efficient methods to solve this type of quasi-variational problem. The literature on domain decomposi-
tion methods is large. One can refer, for instance, to the papers in the proceedings of the annual conferences
on domain decomposition methods (starting in 1988 [25]) or those cited in the books [35,41,43]. Naturally,
most of the papers dealing with these methods address linear problems. Also, convergence proofs for varia-
tional inequalities are restricted, in general, to the inequalities coming from the minimization of quadratic
functionals.

This article is a sequel to [6], which presented the first domain decomposition method to model dynamic
faulting under slip-dependent friction in the anti-plane shearing configuration. Even if important features
of the physical phenomenon (like stress interactions) are active in this configuration, only a limited number
of geophysical faults are satisfactorily described by the anti-plane geometry. Moreover, in the anti-plane
description of the friction phenomenon, the normal stress can be considered constant, which is a very impor-
tant simplification. A remarkable consequence of this assumption is that we can associate the physical prob-
lem to the minimization of the energy function. By contrast, in the full 3D and in-plane configurations, studied
in the present paper, the nonlinear problem at each time step cannot be associated to an optimization problem.
This is due to the ‘‘non-associative” character of Coulomb friction law. The concept of associativity is cur-
rently used in the theory of plasticity when the flow rule can be written through the derivative of the yield
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potential. Here, since the normal stress is involved in the friction law, the slip rate rule cannot be written
through the derivative of the stress potential. Many important difficulties arise from the resolution of a
quasi-variational problem instead of a variational problem, from both mathematical and computational
points of view. However, the challenges in 3D modeling of earthquake source dynamics are worth the efforts
of the present paper to overcome these difficulties.

The aim of this paper is to propose an efficient numerical scheme to model the initiation and propagation of
rupture in a heterogeneous medium, on fault systems of complex geometry (in-plane or 3D) and heteroge-
neous frictional properties. Using a Schwarz method to solve the quasi-variational problem induced by an
implicit time-stepping scheme, the original problem splits into two subproblems. The first subproblem is linear
and its unknowns are the nodal values from the intact domain (i.e. excluding the faults). The unknowns of the
second subproblem are the degrees of freedom of the mesh nodes lying on the faults, i.e. on the domain bound-
ary where conditions of contact and friction are imposed. Evidently, this second subproblem is nonlinear; it is
solved by the same Schwarz algorithm by splitting it into local nonlinear subproblems of a very small size
(they have three unknowns in the in-plane problem and five unknowns in the 3D problem), so that quasi-expli-
cit efficient solvers can be used. In fact, the resulting method is simply a nonlinear Gauss–Seidel method (see
e.g. [24]) for the non-smooth subproblem, which exhibits a strongly local nonlinearity. Consequently, the solu-
tion procedure at each time step consists in the iterative resolution (until convergence) of one large linear sub-
problem and some very small nonlinear subproblems. The number of Schwarz iterations depends on the
number of subdomains, hence on the number of nodes on the fault, which is always significantly smaller than
the total mesh size.

The paper is organized as follows. In the next section, we formulate the continuous 3D problem as a quasi-
variational inequality. Section 3 is devoted to the time discretization of the continuous problem using an impli-
cit Newmark method. In Section 4, we describe the Schwarz algorithm developed to solve the finite element
form of the discretized problem. In Section 5, we prove that the local nonlinear subproblems have a unique
solution, and we give a detailed algorithm to solve them. An explicit formulation of these subproblems is
derived in the Appendix. Section 6 is devoted to some numerical experiments. Some convergence tests are per-
formed (instability capturing, energy dissipation). Also, normal stress variations on the fault are investigated,
and the numerical method is applied to a relevant physical problem (behaviour of a branched fault system).
Finally, in Section 7, the main points of this paper are summarized.

2. Continuous problem

We consider the deformation of an elastic body occupying, in the initial unconstrained configuration, a
domain X in Rd , where d ¼ 2 for the plane case and d ¼ 3 for the full 3D problem. The Lipschitz boundary
oX of X is supposed to be smooth and divided into two disjoint parts: the exterior boundary Ce ¼ oX and the
internal one C composed of N f bounded connected surfaces (or arcs for d ¼ 2) Ci

f ; i ¼ 1; . . . ;N f , called cracks
or faults. The exterior boundary consists of CD and CN . We denote by n the unit outward normal on Ce.

The elastodynamic problem consists in finding the displacement field u : ½0; T � � X! Rd satisfying:
divrðuðtÞÞ ¼ q€uðtÞ in X; ð1Þ
rðuðtÞÞ ¼ CeðuðtÞÞ in X; ð2Þ
uðtÞ ¼ 0 on CD; ð3Þ
rðuðtÞÞn ¼ 0 on CN ; ð4Þ
where q > 0 is the density and the dots represent time derivatives. The notation rðuÞ denotes the stress tensor
field lying in Sd , the space of second order symmetric tensors on Rd . The linearized strain tensor field is
eðuÞ ¼ ð$uþ $TuÞ=2 and C is the fourth order symmetric and elliptic tensor of linear elasticity.

On C, we denote by ½ � the jump across C (i.e. ½w� ¼ wþ � w�), and the corresponding unit normal n on C
points outwards the positive side. Afterwards we adopt the following notation for any displacement field u and
for any density of surface forces rn defined on C:
u ¼ unnþ ut and rn ¼ rnnþ rt;
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where un ¼: u � n and ut are the normal and tangential displacements, and rn ¼: rðuÞn � n and rt are the normal
and tangential over-stresses acting on C.

The contact on C is assumed to be frictional, without separation, and the stick and slip zones are not known
in advance:
½ _unðtÞ� ¼ 0; ½rðuðtÞÞn� ¼ 0; ð5Þ
½ _utðtÞ� ¼ 0) jrtðuðtÞÞ þ r

p
t j 6 �lðsðtÞÞðrnðuðtÞÞ þ rp

nÞ;
½ _utðtÞ� 6¼ 0) rtðuðtÞÞ þ r

p
t ¼ lðsðtÞÞðrnðuðtÞÞ þ rp

nÞ
½ _utðtÞ�
j½ _utðtÞ�j ;

(
ð6Þ
where rp is the pre-stress which will be supposed to be continuous on X with rp
nðxÞ 6 r0 < 0, for all x 2 C. For

jr0j large enough we can suppose that during the seismic event (i.e. for t 2 ½0; T �) we have
rnðuðtÞÞðxÞ þ rp
nðxÞ 6 0; for all x 2 C; ð7Þ
which assures that no separation occurs on the fault C. The friction force also depends on the total slip
sðtÞ ¼:

Z t

0

j½ _utðnÞ�jdn
through a friction coefficient l ¼ lðsÞ. Note that the total slip s is a non-reversible parameter and expresses the
isotropic weakness of the friction resistance during the slip process. The anisotropic dependence of the friction
law is beyond the scope of this paper. Concerning the regularity of l : C� Rþ ! Rþ we suppose that the fric-
tion coefficient is a decreasing Lipschitz function, with respect to the slip. The equations (6) assert that the
tangential (frictional) stress rtðuðtÞÞ þ r

p
t is bounded by the normal stress rnðuðtÞÞ þ rp

n multiplied by the value
of the friction coefficient l. If such a limit is not attained sliding does not occur. Otherwise the friction stress is
opposed to the slip rate ½ _utðtÞ� and its absolute value depends on the total slip sðtÞ through l.

Adding to the above equations and boundary conditions some initial conditions
uð0Þ ¼ u0; _uð0Þ ¼ u1; ð8Þ

which are small perturbations of the equilibrium u ¼ 0, we can state the complete dynamic problem (1)–(8).

We shall use the following spaces of functions H ¼: L2ðXÞd ;R ¼: H�
1
2ðCÞ (i.e. R is the dual of H

1
2ðCÞ) and
V ¼: fv 2 H 1ðXÞd ; v ¼ 0 on CD; ½vn� ¼ 0 on Cg;
W ¼: fv 2 H 1ðXÞd ; v ¼ 0 on CD; ½vt� ¼ 0 on Cg;

ð9Þ
and we consider the following bilinear applications
aðu; vÞ ¼:

Z
X
ðCeðuÞÞ : eðvÞdX; bðu; vÞ ¼:

Z
X

qu � vdX:
The variational formulation of the problem consists in finding uðtÞ 2 V with _uðtÞ 2 V; €uðtÞ 2 H and rnðtÞ 2 R
verifying:
bð€uðtÞ; v� _uðtÞÞ þ aðuðtÞ; v� _uðtÞÞ �
Z

C
lðsðtÞÞðrnðtÞ þ rp

nÞðj½vt�j � j½ _utðtÞ�jÞ

þ
Z

C
rp

t � ½vt � _utðtÞ�P 0; 8v 2 V; ð10ÞZ
C

rnðtÞ½wn� ¼ bð€uðtÞ;wÞ þ aðuðtÞ;wÞ; 8w 2W: ð11Þ
If rnðtÞ is not regular enough, then the integral term on C is replaced by the duality product.
The above formulation is valid when the geometry of the fault is smooth. If the normal vector has discon-

tinuities along the fault, the normal stress rn of the mixed finite element formulation, given through (11), is still
well defined. This is a consequence of the facts that we deal in (11) with an integral formulation and the normal
vector is well defined on each segment of the contact boundary. By contrast, the tangential slip rate _ut is not
well defined and the friction law (6) has to be reconsidered in the context of a discontinuity of the normal (see
for instance [26]).
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3. Time discretization

Explicit time-stepping schemes require a step value smaller than the critical CFL time step which is of the
order of the ratio of the mesh size to the wave velocity. The duration of the initiation phase may be very large
[10,14,29] and it may be very different from this threshold, so that the time step would be too small to allow
simulations of the initiation phase. For this reason, we need an implicit time-stepping scheme allowing much
larger values than the critical CFL time step.

The dynamic problem on X is discretized in time by the Newmark method with parameters b ¼ 1=4 and
c ¼ 1=2 (see for instance [23]). To this end, let Dt > 0 be the time step, N the maximum number of steps,
and T ¼ NDt. We denote by uk; _uk; €uk and rk

n the discrete counterparts of the solution at time t ¼ kDt, i.e.
uk � uðkDtÞ; _uk � _uðkDtÞ; €uk � €uðkDtÞ and rk

n � rnðkDtÞ for all 0 6 k 6 N . The initial conditions (8) become
u0 ¼ u0; _u0 ¼ u1; €u0 ¼ q�1divðrðu0ÞÞ

which is the starting point of a recursive problem. Suppose that we have constructed the solution up to
t ¼ kDt, i.e. we have uj; _uj; €uj and rj

n for all j 6 k. In the Newmark method, the numerical solution
ukþ1; _ukþ1; €ukþ1 and rkþ1

n of (10) and (11) at t ¼ ðk þ 1ÞDt is obtained from
ukþ1 ¼ ukþDt _ukþ Dt
2

� �2

ð€ukþ1þ €ukÞ; _ukþ1 ¼ _uk þDt
2
ð€ukþ1þ €ukÞ _ukþ1 2V;

bð€ukþ1;v� _ukþ1Þþ aðukþ1;v� _ukþ1Þ�
Z

C
lðskþ1Þðrkþ1

n þrp
nÞðj½vt�j� j½ _ukþ1

t �jÞþ
Z

C
rp

t � ½vt� _ukþ1
t �P 0; 8v2V

rkþ1
n 2R;

Z
C
rkþ1

n ½wn� ¼ bð€ukþ1;wÞþ aðukþ1;wÞ; 8w2W;
where V and W are the spaces defined in (9) and skþ1 is the total slip
skþ1 ¼ sk þ Dt
2
ðj½ _ukþ1

t �j þ j½ _uk
t �jÞ:
By writing each term as a function of the velocity, the above problem becomes the following variational
inequality:

Find _ukþ1 2 V and rkþ1
n 2 R such that
bð _ukþ1; v� _ukþ1Þ þ Dt
2

� �2

að _ukþ1; v� _ukþ1Þ

� Dt
2

Z
C

lkðj½ _ukþ1
t �jÞðrkþ1

n þ rp
nÞðj½vt�j � j½ _ukþ1

t �jÞP F kðv� _ukþ1Þ; 8v 2 V ð12Þ

Dt
2

Z
C

rkþ1
n ½wn� ¼ bð _ukþ1;wÞ þ Dt

2

� �2

að _ukþ1;wÞ � F kðwÞ; 8w 2W; ð13Þ
where lk and F k are given by
lkðaÞ ¼ l sk þ Dt
2
ðj½ _uk

t �j þ aÞ
� �

; a P 0 ð14aÞ

F kðvÞ ¼ b _uk þ Dt
2

€uk; v

� �
� Dt

2
a uk þ Dt

2
_uk; v

� �
� Dt

2

Z
C

rp
t � ½vt�: ð14bÞ
If _ukþ1 is found, then one can deduce ukþ1 and €ukþ1 through
ukþ1 ¼ uk þ Dt
2
ð _uk þ _ukþ1Þ; €ukþ1 ¼ 2

_ukþ1 � _uk

Dt
� €uk: ð15Þ
Hence, the use of an implicit scheme for the wave equation with frictional type conditions on the faults will
imply the resolution of a nonlinear problem, given by a variational inequality, at each time step.
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4. Schwarz domain decomposition method

Although the following domain decomposition method is similar to that given in [6], for the convenience of
the reader, we give below a short description of it. We consider over the domain X a conforming triangular
mesh T h, of size h, such that the nodes on the sides of the fault C can be associated two by two having the same
coordinates (one of them being located on the positive side of C and the other one on the negative side). In the
following, we shall denote by xi; i ¼ 1; . . . ; nd the interior nodes of T h in X, and by xþi and x�i ; i ¼ 1; . . . ; nf ,
the pairs of nodes on the two sides of C having the same coordinates. We use the linear finite element spaces,
and the shape functions in the nodal basis associated to T h will be denoted by /i; i ¼ 1; . . . ; nd , and /þi and
/�i ; i ¼ 1; . . . ; nf . Consequently, these basis functions will be piecewise linear, continuous functions such that:
/iðxiÞ ¼ 1 and /i ¼ 0 at the other mesh nodes of T h;/

þ
i ðxþi Þ ¼ 1 and /þi ¼ 0 at the other mesh nodes of T h,

and, finally, /�i ðx�i Þ ¼ 1 and /�i ¼ 0 at the other mesh nodes of T h.
We shall use a decomposition of the domain X made up of two overlapping subdomains, X1 and X2. The sub-

domain X1 contains all the inner nodes of the domain X; xi; i ¼ 1; . . . ; nd , whereas the nodes xþi and
x�i ; i ¼ 1; . . . ; nf , lie in the subdomain X2. First, we introduce other subdomains, denoted Oi. We write
O1 ¼ X, and for each pair of nodes xþi and x�i on C, we define the subdomains Oiþ1; i ¼ 1; . . . ; nf , which are
obtained by the union of the triangles (in the 2D case) or tetrahedra (in the 3D case) which have a vertex at either
node xþi or x�i on C (see Fig. 1). Consequently, Oiþ1 ¼ Intðsupp/þi Þ [ Intðsupp/�i Þ; i ¼ 1; . . . ; nf . Now, we
write X1 ¼ O1, and the second subdomain will be defined as X2 ¼

Snf

i¼1Oiþ1.
Roughly speaking, the Schwarz algorithm is an iterative procedure such that, within an iteration, similar

problems are solved in each subdomain. The unknowns of each subproblem are the unknowns of the initial
problem corresponding to the nodes of the subdomain. The boundary conditions are of Dirichlet type: on the
boundary of each subdomain, the values of the solutions of the other subdomains are imposed. By the above
decomposition of the domain X, the unknowns inside the domain and those on C lie in different subdomains.
Moreover, since the domain X1 has no unknown on the fault, the subproblem on X1 becomes linear, i.e. it
reduces to solving an algebraic linear system. The nonlinear subproblem on X2 is solved by the same Schwarz
algorithm by using O2; . . . ;OM ;M ¼ nf þ 1, as a domain decomposition of X2. Consequently, at each global
iteration of the algorithm, we (sub-)iterate over O2; . . . ;OM until the convergence over whole X2 is achieved,
and then we solve the algebraic linear system corresponding to X1. The nonlinear subproblems over each
O2; . . . ;OM are of a small size (they have three unknowns in 2D and five unknowns in 3D) and it allows us
to use efficient solvers which will be given in Section 5.

To introduce the finite element form on X of problem (12) and (13), first we define the space
Fig. 1.
of hac
Uh ¼: fv 2 C0ðXÞd : vjs 2 P 1ðsÞ; s 2 T h; v ¼ 0 on CDg:
Decomposition of X. The subdomain X2 has been shaded, and the first two small subdomains O2 and O3 are pointed out by means
hures.
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Here, we assume that the boundary C is composed of polygonal curves (in 2D) or triangular polyhedral sur-
faces (in 3D), without any additional branch (that is, in 2D, each point of the discretized interface C is con-
nected to two other fault points at most). Then, for each pair of nodes xþi and x�i on C, we define the normal
unit vector ni as the directing vector of the bisectrix of the (polyhedral) angle associated to the common geo-
metrical point of xþi and x�i , and with direction from xþi to x�i . Now, denoting by ui the common trace of /þi
and /�i on C, for any v 2 Uh, we write
½vn� ¼
Xnf

i¼1

fvðxþi Þ � vðx�i Þg � niui;

½vt� ¼
Xnf

i¼1

fvðxþi Þ � vðx�i Þ � ½vn�nigui:
Using these definitions, we associate to the spaces introduced in (9) the linear finite element spaces
Vh ¼: fv 2 Uh : ½vn� ¼ 0 on Cg;
Wh ¼: fv 2 Uh : ½vt� ¼ 0 on Cg:
Also, we have to associate to the space R of the normal stresses on C; rn, a space of Lagrange multipliers,
which we shall denote Rh. In the two-dimensional case we shall use the space introduced in [45] which is gen-
erated by some nodal basis functions wi; i ¼ 1; . . . ; nf , having the orthogonality property
Z

C
uiwj ¼ dij

Z
C

ui: ð16Þ
Now we write the finite element problem associated to (12) and (13) for a fixed time step k þ 1 as: find _u 2 Vh

and rn 2 Rh such that
bð _u; v� _uÞ þ Dt
2

� �2

að _u; v� _uÞ

�
Xnf

i¼1

Dt
2

Z
C

lkðj½ _ut�ijÞðrn þ rp
nÞðj½vt�ij � j½ _ut�ijÞui P F kðv� _uÞ; 8v 2 Vh; ð17Þ

Dt
2

Z
C

rn½wn� ¼ bð _u;wÞ þ Dt
2

� �2

að _u;wÞ � F kðwÞ; 8w 2Wh; ð18Þ
where lk and F k follow ((14). Note that we have dropped the index k þ 1 denoting the time step, and the inte-
gral over C has been approximated as
Z

C
lkðj½ _ut�jÞðrn þ rp

nÞðj½vt�j � j½ _ut�jÞ ¼
Xnf

i¼1

Z
C

lkiðj½ _ut�ijÞðrn þ rp
nÞðj½vt�ij � j½ _ut�ijÞui
with ½vt�i ¼ vtðxþi Þ � vtðx�i Þ and
lkiðaÞ ¼ l zi; sk
i þ

Dt
2
ðj½ _uk

t �ij þ aÞ
� �

; a P 0; sk
i ¼:

Z kDt

0

j½ _ut�ij; ð19Þ
zi being the common geometrical point of xþi and x�i (as l can be a function of the position on C, too). To
explicitly write the Schwarz algorithm corresponding to the decomposition of X by the subdomains X1 and
X2, we have to introduce the functional subspaces associated with this decomposition. Hence, we associate
to X1 the space
Uh
1 ¼: fv 2 Uh : v ¼ 0 on Cg;
and to X2 the space
Uh
2 ¼: fv 2 Uh : v ¼ 0 in X n X2g:
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Note that in fact, since X1 ¼ X, the method operates rather as a space decomposition than as a domain decom-
position. Since the solution in Uh

2 is obtained by the same iterative method, we also introduce the spaces cor-
responding to the subdomains Oiþ1; i ¼ 1; . . . ; nf , as
Uh
2i ¼: fv 2 Uh : v ¼ 0 in X n Oiþ1g:
Also, we define similar subspaces Vh
1;V

h
2;V

h
2i and Wh

1;W
h
2;W

h
2i. Now, we can propose an iterative algorithm to

solve problem (17) and (18).

Algorithm. The algorithm starts with an arbitrary _u0 ¼ _u0
1 þ _u0

2; _u0
1 2 Vh

1; _u0
2 ¼ _u0

21 þ � � � þ _u0
2nf
2 Vh

2; _u0
2i 2 Vh

2i;
i ¼ 1; . . . ; nf . We assume that after n iterations we have obtained _un ¼ _un

1 þ _un
2; _un

1 2 Vh
1; _un

2 ¼ _un
21 þ � � � þ _un

2nf
2

Vh
2; _un

2i 2 Vh
2i; i ¼ 1; . . . ; nf .

First step. We compute _unþ1
1 2 Vh

1, the approximation of _u on X1 at iteration nþ 1, as the solution of the alge-
braic linear system
bð _unþ1
1 þ _un

2; vÞ þ
Dt
2

� �2

að _unþ1
1 þ _un

2; vÞ ¼ F kðvÞ for all v 2 Vh
1: ð20Þ
Second step. We iteratively compute _unþ1
2 2 Vh

2, the approximation of _u on X2, by iterating over the subspaces
Vh

21; . . . ;Vh
2nf

. Let us write _unþ1;0
2 ¼ _un

2 and _unþ1;0
2i ¼ _un

2i; i ¼ 1; . . . ; nf . The approximation _unþ1;mþ1
2i 2 Vh

2i of _u (at
the overall iteration nþ 1 and the local iteration mþ 1 over the subspaces of Vh

2) is the solution of the follow-
ing local nonlinear problem (LNP):
bð~_unþ1;mþ1
2i ; v2i � _unþ1;mþ1

2i Þ þ Dt
2

� �2

að~_unþ1;mþ1
2i ; v2i � _unþ1;mþ1

2i Þ

� Dt
2

Z
C

lkiðj½ð _unþ1;mþ1
2i Þt�jÞðrn þ rp

nÞðj½ðv2iÞt�j � j½ð _u
nþ1;mþ1
2i Þt�jÞui P F kðv2i � _unþ1;mþ1

2i Þ; 8v2i 2 Vh
2i;

ð21Þ
Dt
2

Z
C

rn½ðw2iÞn� ¼ bð~_unþ1;mþ1
2i ;w2iÞ þ

Dt
2

� �2

að~_unþ1;mþ1
2i ;w2iÞ � F kðw2iÞ; 8w2i 2Wh

2i: ð22Þ
In the above equations we have denoted
~_unþ1;mþ1
2i ¼ _unþ1

1 þ
Xi

j¼1

_unþ1;mþ1
2j þ

Xnf

j¼iþ1

_unþ1;m
2j : ð23Þ
Finally, assuming that the convergence of iterative process (21) and (22) is achieved after mend iterations, we
write
_unþ1
2i ¼ _unþ1;mend

2i ; i ¼ 1; . . . ; nf ;
and proceed to iteration nþ 2 of the global iterative process (20)–(22).

5. Solution of local nonlinear problems

In this section we focus on the resolution of (LNP), i.e. the local nonlinear problem (21) and (22). For the
sake of simplicity, we apply the above algorithm to a 2D problem (i.e. d ¼ 2). Evidently, the linear algebraic
system (20) has a unique solution. Again, since nonlinear problem (21) and (22) contains only three unknowns,
we can solve it almost explicitly. We give here a detailed algorithm to solve this problem and show the exis-
tence and the uniqueness of its solution if the value of Dt is small enough. Note that the following calculations
concern slip-weakening friction, but the method also works if the friction increases with slip (slip-strengthen-
ing case), or if the rate-and-state friction law is used.

First, we write the local unknowns vþi ; v
�
i in terms of mean values and jumps in both normal and tangential

directions, denoted by gn
vi
; dn

vi
; gt

vi
; dt

vi
2 R. For a given i ¼ 1; . . . ; nf , any v2i 2 Uh

2i can be written as a vector
function of four components,
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v2i ¼ vþi /þi þ v�i /�i ;
where vþi and v�i are two-dimensional vectors which can be written as
vþi ¼
1

2
ðgn

vi
þ dn

vi
Þni þ

1

2
ðgt

vi
þ dt

vi
Þti;

v�i ¼
1

2
ðgn

vi
� dn

vi
Þni þ

1

2
ðgt

vi
� dt

vi
Þti;
where ti is the unit tangent vector defined at the common geometrical point of xþi and x�i . If v2i 2 Vh
2i then

dn
vi
¼ 0, and if w2i 2Wh

2i then dt
wi
¼ 0.

With these notations, since dn
_unþ1;mþ1

2i
¼ 0, the unknowns of problem (21) and (22) are
r :¼ gn
_unþ1;mþ1

2i
; s :¼ gt

_unþ1;mþ1
2i

; t :¼ dt
_unþ1;mþ1

2i
:

Evidently, variables r; s and t depend on iterations nþ 1 and mþ 1, and on the geometrical point i, but for
simplicity we have dropped the indices. Formula (23) reads now
~_unþ1;mþ1
2i ¼ 1

2
rni þ

1

2
ðsþ tÞti

� �
/þi þ

1

2
rni þ

1

2
ðs� tÞti

� �
/�i þ _̂unþ1;mþ1

2i ; ð24Þ
where
_̂unþ1;mþ1
2i :¼ _unþ1

1 þ _unþ1;mþ1
21 þ � � � þ _unþ1;mþ1

2ði�1Þ þ _unþ1;m
2ðiþ1Þ þ � � � þ _unþ1;m

2nf
is known. We write in the following a problem composed of two equations and one inequality, which un-
knowns are r; s and t, and which is equivalent to (21) and (22).

First, the following two equations on the variables r; s and t are deduced from (21) (see the Appendix for
details)
aþnnr þ bþntsþ b�ntt ¼ dþn ; ð25Þ
bþntr þ aþtt sþ a�tt t ¼ dþt ; ð26Þ
where the coefficients are real constants which can be computed at each iteration mþ 1.
Also, as it follows from the Appendix, the nonlinear frictional boundary condition can be written as
ðb�ntr þ a�tt sþ aþtt t � d�t Þð�t � tÞ � a�nnr þ b�ntsþ bþntt � d�n þ ðrpÞinDt
Z

C
ui

� �
lkiðjtjÞðj�tj � jtjÞP 0; 8�t 2 R:

ð27Þ

Here, variables ðrpÞin are given by
rp
n ¼

Xnf

i¼1

ðrpÞinwi;
where wi; i ¼ 1; . . . ; nf , are the Lagrange multipliers with property (16).
In order to write the inequality (27) on a single variable, t, we solve the algebraic system given by (25) and

(26), finding r and s as functions of t,
r ¼ �Drt

D
t þ Dr

D
; s ¼ �Dst

D
t þ Ds

D
; ð28Þ
where
D¼ aþnnaþtt � ðbþntÞ
2
; Drt ¼ b�nta

þ
tt � bþnta

�
tt ; Dst ¼ aþnna�tt � bþntb

�
nt; Dr ¼ dþn aþtt � dþt bþnt; Ds ¼ dþt aþnn � dþn bþnt:

ð29Þ

Replacing in the above expression of D the expressions of aþnn; a

þ
tt and bþnt in (42) and (43), derived in the Appen-

dix, we get that D > 0 for any Dt > 0. Consequently, r and s are correctly defined in (28) for any value of
Dt > 0. Replacing in (27) the expressions of r and s in (28), we get the inequality
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ðat þ bÞð�t � tÞ þ lkiðjtjÞðct þ dÞðj�tj � jtjÞP 0; 8�t 2 R; ð30Þ

where
a ¼ �Drtb
�
nt � Dsta�tt þ Daþtt ; b ¼ Drb

�
nt þ Dsa�tt � Dd�t ; c ¼ Drta�nn þ Dstb

�
nt � Dbþnt;

d ¼ �Dra�nn � Dsb
�
nt þ Dd�n � DðrpÞinDt

Z
C

ui: ð31Þ
We see that a! 1
2
bðni/

þ
i þ ni/

�
i ; ni/

þ
i þ ni/

�
i Þbðti/

þ
i þ ti/

�
i ; ti/

þ
i þ ti/

�
i Þ

2
> 0 and c! 0 as Dt! 0, and con-

sequently, for small enough Dt, we have
a� jcjlð0Þ > 0: ð32Þ

Now we show that
The inequality ð30Þ has a unique solution for Dt small enough: ð33Þ

and we deduce an algorithm to solve (30).

As stated at the beginning of this paper, the friction coefficient is a decreasing non-negative Lipschitz func-
tion, with respect to the total slip. Consequently, using (19), we get that there exist l0 P l1 P 0 and M > 0
such that
l1 6 lkið�tÞ 6 l0 for any �t P 0

0 6 lkið�t1Þ � lkið�t2Þ 6 M
Dt
2
ð�t2 ��t1Þ for any �t2 P �t1 P 0: ð34Þ
Now, taking in turn �t ¼ 0 and �t ¼ t in (30), we get that this inequality is equivalent to
tðat þ bÞ þ jtjlkiðjtjÞðct þ dÞ ¼ 0; lkiðjtjÞðct þ dÞP jat þ bj: ð35Þ

Moreover, we see that if t satisfies (35) then we have
t ¼ 0() lkið0Þd P jbj ð36aÞ

t > 0() 0 < t 6 � b
a
; t ¼ �b� dlkiðtÞ

aþ clkiðtÞ

() bþ dlkiðtÞ < 0; ad � bc P 0; t ¼ �b� dlkiðtÞ
aþ clkiðtÞ

ð36bÞ

t < 0() � b
a
6 t < 0; t ¼ �bþ dlkið�tÞ

a� clkið�tÞ

() b� dlkið�tÞ > 0; ad � bc P 0; t ¼ �bþ dlkið�tÞ
a� clkið�tÞ : ð36cÞ
We have used (32) and (35) to write the equivalences in (36b) and (36c). In the following, we use (36) to estab-
lish the existence and the uniqueness of the solution of problem (30).

First, we notice that the condition ad � bc P 0 in (36b) and (36c) is equivalent to ct þ d P 0, and, from
(30) and (49), it is equivalent to ri

n þ ðrpÞin 6 0, which is assumed to hold true in (7).
Now, we prove the uniqueness of the solution of problem (30). Since a > 0, from (36b) and (36c), we get

that if (30) has a positive solution then b < 0, and if (30) has a negative solution then b > 0. Consequently, we
have:

Statement 1. Inequality (30) cannot have positive solutions and negative solutions at the same time.
From (34), we get
�b� dlkiðt2Þ
aþ clkiðt2Þ

� �b� dlkiðt1Þ
aþ clkiðt1Þ

����
���� 6 M

Dt
2

ad � bc

ða� jcjlkið0ÞÞ
2
jt2 � t1j for t1; t2 P 0

�bþ dlkið�t2Þ
a� clkið�t2Þ

� �bþ dlkið�t1Þ
a� clkið�t1Þ

����
���� 6 M

Dt
2

ad � bc

ða� jcjlkið0ÞÞ
2
jt2 � t1j for t1; t2 6 0

ð37Þ
and, using (36b) and (36c), we conclude:



3834 L. Badea et al. / Journal of Computational Physics 227 (2008) 3824–3848
Statement 2. For
Dt <
2

M
ða� jcjlkið0ÞÞ

2

ad � bc
; ð38Þ
inequality (30) cannot have more than one positive solution or more than one negative solution.
Now we assume that lkið0Þd P jbj, i.e. t ¼ 0 is a solution of Eq. (30). Assuming that inequality (30) has

another solution t > 0, then b < 0, hence bþ lkið0Þd P 0 and
�b� dlkiðtÞ
aþ clkiðtÞ

� t ¼�b� dlkið0Þ
aþ clkið0Þ

� ad � bc
ðaþ clkið0ÞÞðaþ clkiðtÞÞ

ðlkiðtÞ � lkið0ÞÞ � t 6M
Dt
2

ad � bc

ða� jcjlkið0ÞÞ
2

t� t:
Consequently, if Dt satisfies (38), then inequality (30) cannot have a positive solution. We can get a similar
result for the negative solutions, and finally we can conclude:

Statement 3. If Dt satisfies (38), then inequality (30) cannot have the zero solution and another one different
from zero at the same time.

The uniqueness of the solution of inequality (30) is deduced from the above Statements 1–3.
To prove the existence of the solution of inequality (30), we assume that lkið0Þd < jbj, i.e. t ¼ 0 is not a

solution of inequality (30). Since lki is a decreasing function, we get that lkið�tÞd 6 jbj for any �t P 0. If
b < 0, we have bþ lkið�tÞd 6 0, and using it and the fact that ad � bc P 0, we get that application
�t 7! �b�dlkið�tÞ

aþclkið�t
Þ maps the interval ½0;� b

a� into itself. Taking into account (37), it follows from the fix point theorem
that inequality (30) has a unique positive solution. By a similar reasoning, we get that inequality (30) has a
unique negative solution if b > 0, and the statement (33) is proved.

Taking into account condition (38) and the values of Dt for which (32) holds, we can get an effective upper
bound Dtmax such that inequality (30) has a unique solution for 0 6 Dt 6 Dtmax. Note that this uniqueness con-
dition, involving the time step value, depends on the friction weakening rate. The computation of Dtmax is not
straightforward but, in all the numerical simulations we performed so far, we found that the uniqueness con-
dition was fulfilled for time step values much larger than the CFL threshold (Courant condition for stability of
explicit time stepping).

Assuming that 0 6 Dt 6 Dtmax and rn þ rp
n 6 0 we propose in the following an algorithm for solving prob-

lem (21) and (22).

Algorithm

(1) We calculate a; b; c and d from (31) using (42), (43), (48), (50) and (29).
(2.1) If lkið0Þd P jbj, then t ¼ 0 is the unique solution of inequality (30).
(2.2) If lkið0Þd < jbj and b < 0, then inequality (30) has a unique solution t > 0 which satisfies equation
t ¼ �b� dlkiðtÞ
aþ clkiðtÞ

:

(2.3) If lkið0Þd < jbj and b > 0, then inequality (30) has a unique solution t < 0 which satisfies equation
t ¼ �bþ dlkið�tÞ
a� clkið�tÞ :
(3) We calculate r and s from (28).
(4) We write the solution of problem (21) and (22) as
_unþ1;mþ1
2i ¼ 1

2
rni þ

1

2
ðsþ tÞti

� �
/þi þ

1

2
rni þ

1

2
ðs� tÞti

� �
/�i :
6. Numerical results

The numerical tests are presented below in three parts. The first two parts investigate the performance of
the algorithm detailed in Section 4 to solve (17) and (18). To this end, two kinds of fault instabilities are



L. Badea et al. / Journal of Computational Physics 227 (2008) 3824–3848 3835
considered. In Section 6.1, the initiation phase of earthquakes is modeled by slip weakening friction, without
any variation of normal stress. Conversely, in Section 6.2, the fault is perturbed by normal stress variations
whereas the friction coefficient remains constant. Finally, in Section 6.3, a more complex and realistic simu-
lation is performed where both types of instabilities are present. All these computations were performed on a
3 GHz Pentium 4 M630 computer.

In the following, we consider the in-plane configuration (d ¼ 2), and we assume that the elastic material is
isotropic and homogeneous:
CijklðxÞ ¼ kdijdkl þ 2Gdikdjl
with k;G being the Lamé coefficients.
In Sections 6.1 and 6.2 the equations are written in a non-dimensional formulation, by setting all physical

parameters ðq; k;GÞ equal to 1 and by considering C to be the straight fault ½�1; 1� � f0g. In the realistic appli-
cation of Section 6.3, all these parameters will be chosen to fit typical seismological scaling.

6.1. Slip weakening with constant normal stress

We intend here to prove the ability of our numerical method in capturing the instabilities generated by fric-
tion weakening, resulting in exponentially growing slip amplitude (initiation phase). The conservation of the
total energy is also addressed. These tests, which have been already conducted in the anti-plane case [6], are
performed here in the in-plane configuration.

The computational domain X is the square ½�5; 5� � ½�5; 5�. The friction coefficient is supposed to be piece-
wise linear:
lðx; sÞ ¼
lsðxÞ � lsðxÞ�ldðxÞ

DcðxÞ s; if s 6 Dc;

ldðxÞ; if s > Dc

(
ð39Þ
with lsðxÞ ¼ 2:0 and ldðxÞ ¼ 1:0. The critical slip is DcðxÞ ¼ 0:75. The (initial) pre-stress components on the
fault are rp

t ¼ �2:0 and rp
n ¼ �1:0, verifying rp

t ¼ lsr
p
n , so that the fault is at the failure level everywhere at the

initial time. This assumption is not realistic: in general, only a small portion of the fault is at the failure level
initially, and the propagation of waves from the expanding crack increases the stress elsewhere to the failure
level. The choice of this initial state is motivated by two reasons. The first one is physical: we want to describe
the unstable evolution of the slip near an equilibrium position. The second reason is technical: we want to
point out the ability of the method in capturing instabilities during the initiation phase.

This initial unstable equilibrium position is perturbed by a small velocity impulse (i.e. u0 � 0; ju1j << 1).
The shape and location of the initial perturbation of the velocity field u1 has no influence on the behavior
of the unstable solution. However, for computational reasons, we chose it as a continuous function on X
which support fx 2 X; u1ðxÞ 6¼ 0g is small and located in the neighborhood of the fault system. More precisely,
u1 exhibits a small jump on C with a gaussian-like shape of width a and amplitude A, centered in the middle of
the fault and prolonged by two half-gaussians in the surrounding medium:
u0 � 0; u1ðx1; x2Þ ¼
ðuaðx2

1 þ x2
2Þ; 0Þ if x2 P 0;

ð�uaðx2
1 þ x2

2Þ; 0Þ if x2 < 0

(
ð40Þ
with uaðzÞ ¼ A expðz=ða2 � zÞÞ if 0 6 z < a2, and uaðzÞ ¼ 0 if z P a2. The amplitude and width are A ¼ 10�4

and a ¼ 0:5. With this choice of initial condition, which is antisymmetric with respect to x2, the normal
over-stress rnðuÞ on C is expected to remain equal to zero.

First, in order to discriminate numerical errors due to the time-stepping scheme and finite element spatial
discretization from errors due to the Schwarz algorithm, we analyzed on a single time step computation the
influence of the spatial and temporal discretization parameters (mesh size h and time step Dt) on the solution
accuracy. These tests, similar to those performed in the anti-plane case [6], led to similar results: convergence is
achieved with respect to the mesh size, and the number of Schwarz iterations is an increasing, almost linear
function of the time step. These results are not described in this paper; we refer to [6] for more details. Then,
to investigate convergence on a time interval, we used a heterogeneous mesh (10,043 nodes, 80 edges on the
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fault) to simulate the system evolution in the time period ½0; T � ðT ¼ 5 sÞ with several different values of the
time step. The physical parameters in (39) are such that the characteristic pattern of the initiation phase (earth-
quake nucleation) is excited, but the calculation is stopped before the rupture phase begins. Moreover, each
point on C is initially put at the failure level ðrp

t ¼ lsr
p
nÞ. These tests are detailed in the following paragraphs.

It is worth noting that computation times are governed by the competing influences of the number of time
steps (decreasing with Dt) and the average number of Schwarz iterations per time step (increasing with Dt).
Numerical experiments show that the optimal time step is close to the characteristic ratio of the local mesh
size around the fault to the S-wave velocity ðV S ¼

ffiffiffiffiffiffiffiffiffi
G=q

p
Þ, but that accuracy remains acceptable for larger

values of Dt (see [6] for a more detailed discussion in the anti-plane case).
Fig. 2 illustrates the ability of the numerical scheme to capture the characteristics of the (analytical) solu-

tion, i.e. exponential growth of the slip rate on C. The evolution of the logarithm of slip rate at the center of C,
i.e. t 7! logð½ _utðt; 0; 0Þ�Þ, is depicted. As in the anti-plane case [6], the solution follows the well-known exponen-
tial growth of the initiation pattern. The solution converges for Dt 6 0:1, showing that the numerical algo-
rithm based on Newmark time-stepping scheme and Schwarz method is efficient in capturing time
instabilities, when the solution grows exponentially. Indeed, the Newmark scheme with parameters b ¼ 1=4
and c ¼ 1=2, also called average acceleration method, is known to be unconditionally stable and non-dissipa-
tive (but some numerical dispersion can be observed for large time steps).

We also tested the ability of the numerical scheme to conserve the system’s total energy, i.e. the sum of
kinetic, potential and frictional energies:
Fig. 2.
captur
EðtÞ ¼ EcðtÞ þ EpðtÞ þ Ef ðtÞ ¼
1

2

Z
X

qðj _uðtÞj2 � j _u1j2ÞdXþ 1

2

Z
X
CeðuðtÞÞ : eðuðtÞÞdX�

Z
C

rp
nF ðj½utðtÞ�jÞdC;
where F is an antiderivative of l with respect to the slip s. Theoretically, the total energy E should be constant
in time ðEðtÞ � 0Þ. Fig. 3 shows that it is quite stable for Dt ¼ 0:025, proving very little numerical dissipation.
In conclusion, the numerical scheme (Newmark time-stepping and Schwarz method) is satisfactorily conser-
vative if the time step is not too large.

6.2. Normal stress variations with constant friction coefficient

Here we investigate slip instabilities triggered by normal stress variations. Note that time-dependent values
of normal stress occur on non-planar or non-vertical fault geometries, and for heterogenous material proper-
ties as well. The following test should help us check the ability of the numerical scheme to account for the
coupling between slip and normal stress on the fault. To this end and in contrast with the previous section
(Section 6.1), the friction coefficient is taken constant:
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lðx; sÞ � l
with l = 0.4, hence the physical model does not exhibit any slip weakening as in (39). In the following numer-
ical tests the fault is made of 160 edges (h = 0.00625 locally), and the time step is fixed at Dt ¼ 0:005.

In the previous tests of Section 6.1, the initial conditions (40) were chosen such that the solution does not
exhibit any variation of normal stress on the fault. Here we have imagined a configuration in which the normal
stress cannot be constant during the slip event. For that we have considered a plane wave, i.e. a special solu-
tion ~u of (1) in R2, given by
~uðt; xÞ ¼ Uððx� x0Þ �m� V PtÞm

with U : R! R a smooth scalar function and V P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 2GÞ=q

p
. We have chosen UðzÞ ¼ V 0 expðz2=ða2 � z2ÞÞ

if 0 6 jzj < a, and UðzÞ ¼ 0 if jzjP a, with a ¼ 0:2 and V 0 ¼ 10�4V P; V P ¼
ffiffiffi
3
p

;m ¼ ð 1ffiffi
2
p ; �1ffiffi

2
p Þ. This special solu-

tion corresponds to a plane wave (P-wave) of velocity V P, which directing vector m makes an angle of 45� with
respect to C, being driven through the medium from the top left corner of the domain X.

The initial conditions are u0 ¼ ~uð0Þ and u1 ¼ _~uð0Þ, and the P-wave is prescribed through the boundary con-
ditions on Ce ¼ oX, i.e. ujCeðtÞ ¼ ~ujCeðtÞ. The point x0 was chosen such that, at t ¼ 0, the incident wave has not
yet touched the fault, i.e. u0 ¼ u1 ¼ 0 on C. The pre-stress components on the fault are rp

t ðxÞ ¼ �4:0 and
rp

nðxÞ ¼ �10:0. Since these values verify rp
t ¼ lrp

n , and the initial over-stress rðu0Þ is vanishing on C, the fault
is at the rupture level everywhere at the initial time. Soon after t ¼ 0, the P-wave touches the left tip of the fault
and generates a stress perturbation on the fault. In contrast with the previous situation, described in Section
6.1, here we expect the normal stress to vary during the slip event generated by the incident P-wave.

The slip rate ½ut�, together with the normal and tangential over-stresses on C (rnðuÞ and rtðuÞ respectively),
are plotted against the time and the distance along fault in Fig. 4. One can see a slip patch propagating along C
Time evolution of the slip rate ½ut� (left), normal over-stress rnðuÞ (center) and tangential over-stress rtðuÞ (right) on the fault C.
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from left to right. The P-wave was chosen so that the fault is unloaded. Note that the normal stress rnð~uÞ gen-
erated by the P-wave is positive, so that it tends to decrease the compressive (negative) total normal stress
rp

n þ rnðuÞ applied on the fault. Also, the fault’s equilibrium is changed at the end of the simulation, with a
(static) total tangential stress r

p
t þ rtðuÞ lower (in absolute value) than the initial stress r

p
t . Note that the con-

vention we used on the sign of the stresses is not the one usually used in seismology. Other interesting features
can be observed from the shear stress evolution. First, both a P-wave and an S-wave propagate from the left
fault tip (they can be observed on the right part of Fig. 4). Also, an S-wave is emitted from the right fault tip as
soon as it is reached by the P-wave. The third feature is the slip induced by the S-waves interference. Fig. 5
shows two snapshots of the velocity field, before the wave has touched the fault C at t ¼ 0:4 s, and then as
the wave is passing through the fault at t ¼ 1:0 s.

To point out the influence of normal stress variations on the fault’s behavior, another P-wave is considered,
of opposite sign (i.e. V 0 ¼ �10�4V P), arriving from the bottom left corner of the model. Unlike the first one,
the second P-wave corresponds to a loading process on the fault. The differences between the two simulations
are illustrated in Fig. 6, where the slip rate ½ut� and the normal and tangential over-stresses (rnðuÞ and rtðuÞ
respectively) are plotted against the time at the center of C. In this second simulation, the slip rate (on the left
part of the figure) is much smaller because the total normal stress rp

n þ rnðuÞ (middle) applied on C is more
compressive than the pre-stress rp

n , and consequently, the shear stress drop is much smaller (right part of
the figure). To analyze these differences, we denote by ~rt ¼ rtð~uÞ and ~rn ¼ rnð~uÞ the stresses generated by
the first P-wave. With our choice of incident angle (45�) and with all elastic parameters equal to 1, we have
j~rtj=j~rnj ¼ 0:5, with ~rt < 0 (shear loading) and ~rn > 0 (decompression). In the second simulation, the absolute
values are unchanged, but the normal stress is negative (compression). Hence, the resulting potential stress
drop j~rt � l~rnj takes the following values at each sliding point: j � 0:5~rn � l~rtj ¼ 0:9j~rnj for the unloading
wave, j0:5~rn � l~rtj ¼ 0:1j~rnj for the loading one. Note that these values are not the values observed on the
figures (since they do not take the fault into account). We recall that the potential stress drop is the difference
between the applied shear stress (applied tangential stress) and shear strength (static threshold corresponding
to the applied normal stress). Hence the slip amplitude on C is expected to be larger for the unloading wave
Fig. 5. Two snapshots of the tangential component of velocity _utðt; x1; x2Þ, at t ¼ 0:4s before the wave has touched the fault C (left), and at
t ¼ 1:0 s as the wave is passing through it (right).
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Fig. 6. Time evolution of the slip rate ½ut� (left), of the normal over-stress rnðuÞ (center) and of the tangential over-stress rtðuÞ (right) at the
center ð0; 0Þ of C for the unloading P-wave (solid lines) and for the loading P-wave (dashed lines).
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than for the loading one. Two very different behaviours can be observed in Fig. 6: first, as the prescribed P-
wave passes through C, one observes the expression of the friction law ðrtðuÞ ¼ lrnðuÞÞ; then, in the absence of
sliding, one can see the two travelling shear waves (the first one emitted from the left fault edge where rupture
starts, the second one emitted from the right edge where rupture stops).

6.3. Application to earthquake dynamics on complex fault geometries

Numerical simulations on segmented or branched fault geometries are of great interest to understand earth-
quake physics. Branched fault systems are quite common in the real world, and have been widely studied
through numerical modelling. We refer to some theoretical work about rupture directivity [22] and the influ-
ence of pre-stress state and rupture velocity [15,30], and to some models of the 1999 Hector Mine earthquake
[38] or the 2002 Denali earthquake [8,39].

Here, we use our numerical method to compute source dynamics phenomena on a complex and realistic
fault model (represented in Fig. 7). The fault system is made of one planar fault (segments 1, 2 and 3) and
a lateral branch (segment 4). Note that the branching point A needs a particular treatment concerning the
velocity components and the choice of the normal vector. In this ‘‘triple” point, there are three velocity vectors
associated to the three sides of C denoted i, ii and iii (see Fig. 7). For the jumps between i and ii (resp. ii and iii,
i and iii), we chose the normal of segment 2 (resp. 3, 4).

To model the evolution of the system, we need to refine the mesh around C, and in particular at the branch-
ing point A, and to compute a large number of time steps. To meet these requirements without increasing com-
putation times too much, we used the coupling strategy of [46], that is, the computational domain X is
restricted to the close vicinity of C and embedded in a finite difference grid (i.e. explicit time-stepping and
structured mesh) which extends in the exterior domain (see Fig. 8). The finite difference grid spacing is
dl ¼ 500 m; the finite element mesh coincides with this grid on their common interface, and it is refined so that
the local mesh size is dl=20 at the branching point and dl=10 at the tips.
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Fig. 7. Geometry of the modeled fault system.

Fig. 8. Hybrid finite element–finite difference scheme [46]. The unstructured FE mesh around the fault is embedded in a FD grid (with an
explicit time-stepping) efficient for wave propagation. Note that the FE nodes and the FD grid points coincide in the overlapping domain.
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6.3.1. Supershear transition on a branched fault

The parameters are chosen to be physically relevant: q = 3000.0 kg/m3, G = k = 27.0 GPa, and the slip
weakening friction law, given by (39), is piecewise linear. We performed two simulations. The physical param-
eters are described on Table 1; the only difference between the two simulations is the static threshold ls on
segment 2, whose values are chosen so that segment 2 is more resistant to rupture in the second simulation.
The pre-stress was chosen to be rp

11 ¼ rp
22 ¼ �300 MPa and rp

12 ¼ �150 MPa, such that only the first segment
is initially ready to slip (i.e. rp

t ¼ lsr
p
n at all points of segment 1). The pre-stress is then resolved into different

shear and normal components based on the fault orientation, which explains the different values of jrp
n j and

jrp
t j on segment 4. Note that different friction coefficients were chosen on segment 4, not for computational

reasons, but to avoid negative values of stress drop (since we deal in this paper with slip-weakening friction).
To compare the two numerical simulations, we show in Fig. 9 10 snapshots of the first component of the

velocity field. In both simulations, the initial (small) perturbation, represented in the first snapshots at the top,
is given by
Table
Colum
static t
criterio

Segme

1
2
3
4

u0 � 0; u1ðx1; x2Þ ¼ ðuaðx2
1 þ x2

2Þ; 0Þ;

where ua is the same gaussian-like function as in (40). Hence, the support of the initial perturbation is con-
centrated near segment 1, which is very close to failure, so that rupture initiates quickly. The initiation (nucle-
ation) phase, observed on the first three snapshots on segment 1, is characterized by a self-similar shape and an
exponential growth in time. Since segment 2 is more resistant in the second simulation, the phase of rupture
propagation is slightly delayed, so that the initiation phase is prolonged.

Afterwards, the two simulations are quite different, as illustrated in Fig. 9: in the first case, transition to
supershear rupture velocity occurs on segment 2 and a Mach cone shear wave (S-wave) pattern can be seen
behind the rupture front, whereas the characteristic pattern of sub-Rayleigh rupture propagation is observed
in the second case (snapshots 4–5). The difference between the two simulations can be explained through a
supershear transition criterion. Following [2,9], on each segment, we define the parameter S as follows:
S ¼ lsr
p
n � rp

t

rp
t � ldr

p
n
:

The values of parameter S on each segment are described in Table 1. The behavior of each fault segment is
partly governed by the following supershear transition criterion (S-criterion, see [2,9]) on the rupture velocity
V rupture. First, let us denote by V S the S-wave velocity, by V Rayleigh the Rayleigh velocity ðV Rayleigh ’ 0:92V SÞ,
and let Sc ’ 1:63 be the critical value of the parameter S for supershear rupture propagation to take place.
Then the S-criterion can be formulated as:
IfS > Sc; then V rupture K V Rayleigh ðsub-Rayleigh propagationÞ:
IfS < Sc; then supershear transition ðV rupture > V SÞ can occur:

ð41Þ
If we check now the values of parameter S in Table 1, we see that the supershear transition criterion (41) can
explain the qualitative difference between the two configurations: segment 2 is eligible for supershear transition
in the first simulation, but is not in the second one.

Let us go back to Fig. 9. As rupture approaches the branching point A (see Fig. 7), the segments 3 and 4 are
in competition for rupture. In the first simulation (at left), the rupture arriving supershear from segment 2 just
1
ns 2–4: physical parameters used for both simulations on the fault model described in Fig. 7 (the only difference is the value of the
hreshold ls on segment 2). Columns 5–6: normal and tangential pre-stresses. Column 7: parameter S for the supershear transition
n

nt ls ld Dc ðmÞ jrp
n j ðMPaÞ jrp

t j ðMPaÞ S

0.5 0.46 0.5 300.0 150.0 0.0
0.51/0.57 0.46 0.5 300.0 150.0 0.25/1.75
0.51 0.46 0.5 300.0 150.0 0.25
0.33 0.28 0.5 382.57 125.23 0.056



Fig. 9. Supershear transition. Evolution of the velocity field ðx1; x2Þ ! _u1ðt; x1; x2Þ (from top to bottom) for the two configurations
described in Table 1 (the first one at left and the second one at right). The delay between two consecutive snapshots is 30Dt ’ 1 s. Note that
the nature of the arriving rupture on segment 2 conditions rupture history on segments 3 and 4.
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propagates further on segment 4 with a supershear velocity, so that segment 3 is unloaded. However, the
strong cone wave emitted by the rupture on segment 4 generates a slip pulse on segment 3 (snapshots 6–7
at left). In the second simulation, because of the stress field created by sub-Rayleigh rupture propagation
on segment 2, rupture literally jumps on segment 4 (snapshot 7 at right), where supershear transition occurs.
A second rupture nucleates at the beginning of segment 4, while the rupture front on segment 2 is 3 km behind
the branching point. Note that such a discontinuous rupture process was found in a model of the 2002 Denali
earthquake [39]. Unlike the first simulation, the cone wave is not strong enough to trigger segment 3, which
remains totally inhibited (snapshot 8 at right). These different features illustrate an important issue: the nature
of the arriving rupture on segment 2 conditions rupture history on segments 3 and 4.

Some predictions can also be derived from the supershear transition criterion (41) concerning the rupture
path beyond point A. From Table 1, we see that the value of S is larger on segment 3 than on segment 4, which
means that segment 3 requires more energy to break, hence the rupture path is more likely to follow segment 4.
And finally, the S-criterion shows that supershear transition should occur on segment 4. All these predictions
are in agreement with our numerical experiments.

6.3.2. Rupture path on a branched fault

The preceding two simulations concern a very special case, since the S value is close to 0 on branch 4, so
that the rupture is expected to run suddenly along this branch, with the rupture velocity jumping rapidly to P-
wave speed. We consider here a case where the rupture velocity never exceeds Rayleigh speed (which is a less
favorable case to resolve a rupture propagation, hence more interesting to test our numerical method). Such
cases are considered in [30] (using a boundary integral equation method) where the rupture path is studied
with respect to three parameters: the angle formed by segments 3 and 4, the pre-stress orientation and the loca-
tion of the nucleation zone (which governs the rupture velocity when reaching the branching point). The
geometry of Fig. 7 is very close to one of the cases studied in [30]. The parameters, given in Table 2, are homo-
geneous, except on segment 1 where the rupture initiates. The pre-stress is given by the following relations:
rp

22 ¼ �300 MPa, rp
12=r

p
22 ¼ 0:24 and rp

11=r
p
22 ¼ 1:0 (first case) or 2.0 (second case). Again, the pre-stress is then

resolved into different shear and normal components based on the fault orientation, which explains the differ-
ent values of jrp

n j and jrp
t j (hence S) on segment 4.

These two simulations are illustrated in Fig. 10. The rupture initiates on segment 1, as expected, then prop-
agates towards point A at sub-Rayleigh speed. As the rupture reaches the branching point, the two simula-
tions become very different: the rupture path follows segment 3 only (case 1) or segment 4 only (case 2),
with sub-Rayleigh speed (case 1) or supershear speed (case 2). These results are consistent with those of [30].

6.3.3. Slip rate and stresses on a kinked fault

In the second simulation of Table 2, the segment 3 is not active, hence the fault system behaves like a simple
kinked fault composed of segments 1, 2 and 4. This case was studied in [42], using a boundary integral equa-
tion method. They found a singularity at the kink (point A), which was confirmed by our computations. We
performed a simulation very similar to the second configuration of Table 2, but without segment 3. Fig. 11
shows that both tangential and normal stresses are singular at the kink (according to the friction law, they
are proportional at each point where the slip rate is not zero, in particular around the kink). Also, the slip
profile shows an abrupt bend at the kink but remains continuous. Note that the normal stress is locally posi-
tive, which means that the fault is locally in extension and should not be ruled by friction; this physical
Table 2
Columns 2–4: physical parameters used for both simulations on the fault model described in Fig. 7 (the only difference is the ratio rp

11=r
p
22,

hence the pre-stress orientation). Columns 5–6: normal and tangential pre-stresses. Column 7: parameter S for the supershear transition
criterion

Segment ls ld Dc ðmÞ jrp
n j ðMPaÞ jrp

t j ðMPaÞ S

1 0.24 0.12 2.5 300.0 72.0 0.0
2 0.6 0.12 2.5 300.0 72.0 3.0
3 0.6 0.12 2.5 300.0 72.0 3.0
4 0.6 0.12 2.5 339.63/364.40 60.11/142.68 7.42/0.77



Fig. 10. Rupture path. Velocity field ðx1; x2Þ ! _u1ðt; x1; x2Þ at t ¼ 35Dt ’ 1:1 s for the two configurations described in Table 2.
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Fig. 11. Slip rate, slip, normal stress and tangential stress profiles along the kinked fault made of segments 1, 2 and 4 (see Fig. 7), projected
along axis x1 at t ¼ 35Dt ’ 1:1 s. The kink is located at x1 ¼ 0.
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inconsistency could be partly handled by allowing separation of fault sides, or plastic deformation around the
kink.

7. Conclusion

We have proposed a numerical scheme able to describe the initiation and propagation of rupture on a
fault system with a complex geometry (in-plane or 3D) and to handle heterogeneous material and frictional
properties. We have used the Schwarz method to solve the quasi-variational problems obtained after impli-
cit time discretization. In fact, the problem splits into two subproblems. The first one is linear and its
unknowns are related to the mesh nodes which lie inside the domain. The unknowns of the second subprob-
lem are the degrees of freedom of the mesh nodes lying on the fault, i.e. on the domain boundary where the
conditions of contact and friction are imposed. This second subproblem is nonlinear and it is handled by
the same Schwarz algorithm by solving some local nonlinear subproblems of a very small size (they have
three unknowns in the in-plane problem and five unknowns in the 3D problem). Hence, the global algo-
rithm consists in solving, alternatively, one large linear subproblem and some nonlinear subproblems of
a very small size.

The numerical tests illustrate the performance and convergence rate of the algorithm. Two types of insta-
bilities are tested. First, we investigated the ability of our numerical method in capturing the instabilities gen-
erated by the slip weakening character of the friction law. The tests (convergence of Schwarz algorithm,
instability capturing, energy dissipation) were performed in the in-plane configuration and show similar prop-
erties as in the anti-plane configuration [6] although the mathematical formulation is more complex (since the
quasi-variational inequality cannot be associated to the minimization of the energy function). The second type
of instabilities is due to normal stress variations, although the friction coefficient remains constant: the numer-
ical scheme reveals itself to be able to account for the coupling between slip and normal stress on the fault.
Finally, the numerical method was used to compute earthquake source dynamics phenomena on complex
and realistic fault models (kinked or branched geometries), where both types of instabilities are present,
and some relevant features are illustrated: the influence of pre-stress state on rupture path and supershear
transition, and the presence of stress singularities at the kinks.
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Appendix

We derive in this appendix equations (25) and (26) and inequality (27), which are equivalent to problem (21)
and (22) (see Section 5).

The first equation is obtained from (21) by taking v2i 2 Vh
2i such that dn

vi
¼ 0; gn

vi
¼ r þ �r; gt

vi
¼ s and dt

vi
¼ t,

for any �r 2 R. In this way we have,
bð~_unþ1;mþ1
2i ; ni/

þ
i þ ni/

�
i Þ þ

Dt
2

� �2

að~_unþ1;mþ1
2i ; ni/

þ
i þ ni/

�
i Þ ¼ F kðni/

þ
i þ ni/

�
i Þ;
and using (24), we get Eq. (25), that is:
aþnnr þ bþntsþ b�ntt ¼ dþn ;
where
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The second equation is obtained from (21) by taking v2i 2 Vh
2i with dn

vi
¼ 0; gn

vi
¼ rmþ1

i ; gt
vi
¼ sþ �s and dt

vi
¼ t,

for any �s 2 R. We get
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and then we derive Eq. (26), that is:
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and bþnt is given by (42).
Now, we find rn at node i from (22). To this end, we take w ¼ w2i ¼ wþi /þi þ w�i /�i 2Wh

2i in (22). We have
½w2i � ni� ¼ dn

wi
ui, and because w2i 2Wh we get dt

wi
¼ 0. Consequently, writing
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i¼1

ri
nwi; ð44Þ
where wi; i ¼ 1; . . . ; nf , are the Lagrange multipliers with property (16), we get
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Moreover, condition ½rð~_unþ1;mþ1
2i Þn� ¼ 0 on C, from (5), can be written in a weak form as
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¼ 0; i ¼ 1; . . . ; nf . We conclude that
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and from (45) and (46) we get
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From this equation, using again (24), we get
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and b�nt and bþnt are defined in (42). Now, we obtain an inequality from (21) by taking v2i 2 Vh
2i with

dn
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¼ 0; gn
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¼ r; gt
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¼ s and dt
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¼ �t, where �t 2 R. In this way we have,
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where we have taken into account that j½ð _unþ1;mþ1
2i Þt�j ¼ jtj; j½ðv2iÞt�j ¼ j�tj, and like in (44), we have written

rp
n ¼

Pnf

i¼1ðrpÞinwi. The above inequality can be written as
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where b�nt is defined in (42), a�tt and aþtt are defined in (43), and
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Finally, from (47) and (49), we get inequality (27), that is
ðb�ntr þ a�tt sþ aþtt t � d�t Þð�t � tÞ � a�nnr þ b�ntsþ bþntt � d�n þ ðrpÞinDt
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C
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